0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 5 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (LOWER BOUND(ID), 388 ms)
↳8 BEST
↳9 typed CpxTrs
↳10 RewriteLemmaProof (LOWER BOUND(ID), 266 ms)
↳11 BEST
↳12 typed CpxTrs
↳13 RewriteLemmaProof (LOWER BOUND(ID), 186 ms)
↳14 BEST
↳15 typed CpxTrs
↳16 RewriteLemmaProof (LOWER BOUND(ID), 1544 ms)
↳17 BEST
↳18 typed CpxTrs
↳19 LowerBoundsProof (⇔, 0 ms)
↳20 BOUNDS(n^4, INF)
↳21 typed CpxTrs
↳22 LowerBoundsProof (⇔, 0 ms)
↳23 BOUNDS(n^4, INF)
↳24 typed CpxTrs
↳25 LowerBoundsProof (⇔, 0 ms)
↳26 BOUNDS(n^3, INF)
↳27 typed CpxTrs
↳28 LowerBoundsProof (⇔, 0 ms)
↳29 BOUNDS(n^2, INF)
↳30 typed CpxTrs
↳31 LowerBoundsProof (⇔, 0 ms)
↳32 BOUNDS(n^1, INF)
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
fac(0, x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0))
plus(0', x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0', y) → 0'
times(s(x), y) → plus(y, times(p(s(x)), y))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
fac(0', x) → x
fac(s(x), y) → fac(p(s(x)), times(s(x), y))
factorial(x) → fac(x, s(0'))
They will be analysed ascendingly in the following order:
p < plus
plus < times
p < times
p < fac
times < fac
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
p, plus, times, fac
They will be analysed ascendingly in the following order:
p < plus
plus < times
p < times
p < fac
times < fac
Induction Base:
p(gen_0':s2_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_0':s2_0(+(1, +(n4_0, 1)))) →RΩ(1)
s(p(s(gen_0':s2_0(n4_0)))) →IH
s(gen_0':s2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus, times, fac
They will be analysed ascendingly in the following order:
plus < times
times < fac
Induction Base:
plus(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
gen_0':s2_0(b)
Induction Step:
plus(gen_0':s2_0(+(n193_0, 1)), gen_0':s2_0(b)) →RΩ(1)
s(plus(p(s(gen_0':s2_0(n193_0))), gen_0':s2_0(b))) →LΩ(1 + n1930)
s(plus(gen_0':s2_0(n193_0), gen_0':s2_0(b))) →IH
s(gen_0':s2_0(+(b, c194_0)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
times, fac
They will be analysed ascendingly in the following order:
times < fac
Induction Base:
times(gen_0':s2_0(0), gen_0':s2_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_0':s2_0(+(n579_0, 1)), gen_0':s2_0(b)) →RΩ(1)
plus(gen_0':s2_0(b), times(p(s(gen_0':s2_0(n579_0))), gen_0':s2_0(b))) →LΩ(1 + n5790)
plus(gen_0':s2_0(b), times(gen_0':s2_0(n579_0), gen_0':s2_0(b))) →IH
plus(gen_0':s2_0(b), gen_0':s2_0(*(c580_0, b))) →LΩ(1 + b + b2)
gen_0':s2_0(+(b, *(n579_0, b)))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
fac
Induction Base:
fac(gen_0':s2_0(0), gen_0':s2_0(b))
Induction Step:
fac(gen_0':s2_0(+(n1124_0, 1)), gen_0':s2_0(b)) →RΩ(1)
fac(p(s(gen_0':s2_0(n1124_0))), times(s(gen_0':s2_0(n1124_0)), gen_0':s2_0(b))) →LΩ(1 + n11240)
fac(gen_0':s2_0(n1124_0), times(s(gen_0':s2_0(n1124_0)), gen_0':s2_0(b))) →LΩ(3 + b + b·n11240 + b2 + b2·n11240 + 3·n11240 + n112402)
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(*(+(n1124_0, 1), b))) →IH
*3_0
We have rt ∈ Ω(n4) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n4).
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)
fac(gen_0':s2_0(n1124_0), gen_0':s2_0(b)) → *3_0, rt ∈ Ω(b·n11240 + b·n112402 + b2·n11240 + b2·n112402 + n11240 + n112402 + n112403)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
times(gen_0':s2_0(n579_0), gen_0':s2_0(b)) → gen_0':s2_0(*(n579_0, b)), rt ∈ Ω(1 + b·n5790 + b2·n5790 + n5790 + n57902)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
plus(gen_0':s2_0(n193_0), gen_0':s2_0(b)) → gen_0':s2_0(+(n193_0, b)), rt ∈ Ω(1 + n1930 + n19302)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
Lemmas:
p(gen_0':s2_0(+(1, n4_0))) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.